abone ol




Kullanıcı Adı

Şifre


          Şifremi Unuttum?




İletişim

  • 0216 550 46 26




ALTIN ORAN NEDİR


Ödev Bilgileri

 Sayfa Sayısı : 7 Sayfa
 Dökümanın Dili : Türkçe
 Döküman Türü : Word Dökümanı
 Kaynakça :
 Resim/Şekil :
 Tablo :



Sitedeki dosyalar üye olmak için öğrencilerin gönderdiği dosyalardan oluşmaktadır. Eğitim ve öğretim amaçlıdır. Bu dosyaların tümünün editörden gözden geçirilmesi yoğun bir emek gerektiğinden, gözden kaçmış olanlar olabilir. Ayrıca bir üyemiz tarafından gönderilen bir dosyanın telif hakkına tabi olup olmadığını her durumda tespit edemeyebiliriz. Böyle bir durumu fark etmeniz halinde lütfen iletişim mailimizden bize durumu bildirin. Siteden kaldırılması için mesajınıza dosya numarasınıda ekleyerek bize yardım merkezinden gönderebilirsiniz. İlgili dosya 48 saat içerisinde derhal siteden kaldırılır.. Telif haklarına gösterilen özen konusunda bize yardımcı olduğunuz için teşekkür ederiz..
Dosya No: 116095 - | Yardım Merkezi için Lütfen Buraya Tıklayınız

Eğer üye iseniz giriş yapıp dökümanı indirebilirsiniz.


Ödevin Özeti

Altın Oran Nedir?

Altın oran, 1 sayısına eklendiğinde kendi karesine eşit olan iki sayıdan biridir. Altın oran 1,618033.... olarak devam eden ondalık sayıdır. 1 sayısına eklendiğinde kendi karesine eşit olan diğer sayı da - 0,618033... olarak devam eden ondalık sayıdır.

Altın orana ilişkin matematik bilgisi ilk kez İ.Ö. 3. Yüzyılda Öklid’in Stoikheia ("Öğeler") adlı yapıtında "aşıt ve ortalama oran" adıyla kayda geçirilmiştir. Eldeki veriler,bu bilginin geçmişinin aslında Eski Mısır’da İ.Ö. 3000 yılına kadar dayandığını göstermektedir. Grek dünyasına da Pythagoras ve Pythagoras’cular tarafından tanıtıldığı ileri sürülür.

Kısaca altın orana "göz nizamının oranı" diyebiliriz.








Tarihte görülebileceği gibi Sanatçılar bu özelliği kullanıp göze güzel görünen eserler meydana getirmişlerdir.


Örneğin Mona Lisa tablosunun boyunun enine oranı altın oranı verir. Mona Lisanın yüzünün etrafına bir dikdörtgen çizdiğinizde ortaya çıkan dörtkenar bir altın dikdörtgendir. Bu dikdörtgeni, göz hizasında çizeceğiniz bir çizgiyle ikiye ayırdığınızda yine bir altın oran elde edersiniz. Resmin boyutları da altın oran oluşturmaktadır.



M.Ö. 500’lü yıllarda yaşamış olan tüm zamanların en büyük matematikçilerinden biri olan Pisagor (Pythagoras), altın oranla ilgili aşağıdaki düşüncelerini dile getirmiştir:

"Bir insanın tüm vücudu ile göbeğine kadar olan yüksekliğinin oranı, bir pentagramın uzun ve kısa kenarlarının oranı, bir dikdörtgenin uzun ve kısa kenarlarının oranı, hepsi aynıdır. Bunun sebebi nedir? Çünkü tüm parçanın büyük parçaya oranı, büyük parçanın küçük parçaya oranına eşittir." (Eğer normal bir pentagonun AB kenarlarını içersine çizilecek bir pentagramın AC uzunluğu ile karşılaştırırsak uzunluğunu Ø = (1 + √5)/2 = 2cos(p/5) = 1.61803... olarak buluruz yani altın oran sayısı.)

Altın oranın gizeminin ne olduğunun cevabı, Fibonacci lakaplı İtalyan matematikçinin bulduğu bir dizi sayıda gizlidir. Fibonacci sayıları olarak da adlandırılan bu sayıların özelliği, dizideki sayılardan her birinin, kendisinden önce gelen iki sayının toplamından oluşmasıdır.

Leonardo Pisano ya da takma adıyla “Fibonacci” Kimdir?

Orta çağın en büyük matematikçilerinden biri olarak kabul edilen Fibonacci İtalyanın ünlü Pisa şehrinde kesin olarak bilinmemekle birlikte 1170 yılında doğmuştur. Çocukluğu babasının çalıştığı Cezayirde geçmiştir. İlk matematik eğitimini Müslüman bilim adamlarından almış ve İslam uygarlığının kitaplarını incelemiş ve üzerlerinde çalışmıştır.

1201 yılında "Liber Abacci" (cebir kitabı) adında bir matematik kitabı yazmıştır. Arap rakamlarını ve bugün kullandığımız sayı sistemini Avrupaya tanıtmıştır. Bu kitapta, ilkokulda öğrendiğimiz temel matematik (toplama, çarpma, çıkartma ve bölme) kurallarını birçok örnek vererek anlatmıştır. Dönemi için Avrupa’da bilinmemekle birlikte bu k...
- Üye olup tamamını bilgisayarınıza kaydedebilir, üzerinde değişiklik yapabilir, yazıcı çıktısı alabilirsiniz.