abone ol




Kullanıcı Adı

Şifre


          Şifremi Unuttum?




İletişim

  • 0216 550 46 26


Etiket Bulutu

İstanbul Özel Ders doğalgaz elemanları televizyonculuk dil devrimi yazılım staj dosyası reftiye yılgınlık irmik dokuz canlı peri masası sezon tebrik örneği rasyonalist artık emek hıfzı topuz askeri lise eğitsel fanta kuyruk teorisi sosyal bilgiler gunluk ders planı pul şişe turistik yerlerimiz baklavalı fen 6. sınıf ışık ve ses bitkiler guneş enerjisi matkap dağ oluşu romen rakamı kemal tahir esir şehrin insanları archimed kanunu uyuşmazlık ısık bilgisi gatt hormanlar gez geometrik diziler ekonomik büyüme kentlerin sosyo kültürel yapıları dikdörtgen edebiyatın tarihle ilişkisi düğümlü inavasyon nedir toplumsal alanda yapılan inkilaplar serbestçe müzik günlük plan bahşiş cansız çevre şikeste tanımak biyolojinin uygulama alanları çekirdeklenme kuantum yöntemi çalışkanlık atasözleri yanal düşünme 82 anayasası iş hukuku fonksiyonlar huş küresel ısınma sonuçları boxing yaş sebze azamet belgenin genel anlamı aile kuralları resimli anlatım gayrisafi uluslararası ticaretteki bloklar amerikan savaşı efsane resimler yaş problemleri gülistan sadi çok yüzlü hollanda dili tolstoyun kitapları puding spikerlik göz önüne almak tok tok yeni bulunan basit buluşlar 3 yaş cocuk psikolojisi cumhuriyet bayramı ile ilgili oratoryo hidroelektirik santrali izmir gelenek ve görenekleri akdeniz politikası kurumsal karne otokrasi ıstanbulun cografı konumu tersleme cahıt sıtkı tarancı elif uygur tırmalamak pazar analizi arama motoru kullanılan yerler telefon ve telgraf gelişimi letafet ısı iş makinaları mhp salıvermek bar mbar pascal sunum ve özellikleri uv spektrofotometresi ozonosfer


POLİNOMLAR


Ödev Bilgileri

 Sayfa Sayısı : 10 Sayfa
 Dökümanın Dili : Türkçe
 Döküman Türü : Word Dökümanı
 Kaynakça :
 Resim/Şekil :
 Tablo :



Sitedeki dosyalar üye olmak için öğrencilerin gönderdiği dosyalardan oluşmaktadır. Eğitim ve öğretim amaçlıdır. Bu dosyaların tümünün editörden gözden geçirilmesi yoğun bir emek gerektiğinden, gözden kaçmış olanlar olabilir. Ayrıca bir üyemiz tarafından gönderilen bir dosyanın telif hakkına tabi olup olmadığını her durumda tespit edemeyebiliriz. Böyle bir durumu fark etmeniz halinde lütfen iletişim mailimizden bize durumu bildirin. Siteden kaldırılması için mesajınıza dosya numarasınıda ekleyerek bize yardım merkezinden gönderebilirsiniz. İlgili dosya 48 saat içerisinde derhal siteden kaldırılır.. Telif haklarına gösterilen özen konusunda bize yardımcı olduğunuz için teşekkür ederiz..
Dosya No: 133156 - | Yardım Merkezi için Lütfen Buraya Tıklayınız

Eğer üye iseniz giriş yapıp dökümanı indirebilirsiniz.


Ödevin Özeti



Tanımı


a0,a1,a2,.....an reel sayılar ve n N olmak üzere , anxn + an – 1xn-1 + an-2xn-2 + ... + a1x + a0 biçimindeki ifadelere , x’e göre yazılmış reel katsayılı polinom denir. Anxn teriminde an sayısına katsayı , n’ye de terimin derecesi denir.

En büyük dereceli terimin derecesi, polinomun dercesidir. Derece yerine kısaca “der” yazılır. Polinomlar P(x) , Q(x), ... ile gösterilir.

Reel katsayılı polinomların kümesi R|x| ile gösterilir. Katsayıları rasyonel sayılardan oluşan polinoma “rasyonel katsayılı polinom” denir.

Rasyonel katsayılı polinomların kümesi Q|x| tir. Katsayıları tam sayılardan oluşmuş , “tam katsayılı polinomların kümesi” de Z|x| tir.

Z|x| Q|x| R|x|


ÖRNEK

A) X4 + 5X2 – 7X + 6

Çözüm
Dördüncü dereceden polinom.


b) x3 + + 4
x3 + + 4 = x3 + 3x-1 + 4 ifadesi polinom değildir. Çünkü –1 üssü doğal sayı değildir.

c)5x6 + + 1
5x6+ + 1= 5x6 + x1/2 + 1 ifadesi polinom değildir. Çünkü üssü doğal sayı değildir.


d)2x + 7 Birinci dereceden polinom.


e) x3 + x2 – 7x + 5
Üçüncü dereceden polinom.
SABİT POLİNOM

P(x) = a , (a R) polinomuna sabit polinom denir. Sabit polinomun dercesi sıfırdır.

Örnek

P(x) = 4
Q(x) = Polinomları sabit polinomlardır.
R(x) =

NOT
P(x) = 0 sıfır polinomu sabit polinomdur.
P(x) = 0 = 0 . x0 = 0 . x1 = 0 . x7 = ... yazılabileceğinden sıfır polinomunun dercesi belirsizdir. Bu nedenle sıfır polinomunun derecesi yoktur denir.

Örnek
P(2x – 3) = x4 + 2x2 – x + 5 ise P(1) in değerini bulunuz.
Örnek
P(2x – 3) = 4x2 + 6x + 1 olduğuna göre P(x) polinomunu bulunuz.

Çözüm
2x – 3 = 1 => x = 2 yazılır.
P(4 – 3) = 16 + 8 – 2 + 5
P(1) = 24 + 3 = 27 bulunur. Çözüm
P(2x - 3) ifadesinden P(x) i elde etmek için fonksiyonlarda olduğu gibi x yerine 2x-3 ün tersi yazılır.
P(2x – 3) = 4x2 + 6x + 1
P(x) = 4 ( )2 + 6 ( ) + 1
P(x) = 4 . + 3(x + 3) + 1
P(x) = x2 + 6x + 9 +3x + 9 + 1
P(x) = x2 + 9x + 19 olur.


İKİ DEĞİŞKENLİ POLİNOMLAR
P(x , y) = 3x4y3 + 5x3y + 6x – 2y + 5 ifadesi x ve y’ ye göre yazılmış reel katsayılı polinomdur. Bu polinomda

3x4y3 terimin derecesi 3 + 4 = 7
5x3y terimin derecesi 3 + 1 = 4
6x terimin derecesi 1
- 2y terimin derecesi 1
5 terimin derecesi 0


P(x , y) polinomunun derecesi 7 dir.


Örnek
P(x , y) = 2x3y2 – x2y + 2y – x + 2
P(1 , 2) nin değerini bulunuz. Çözüm
X = 1 , y = 2 yazılır.
P (1 , 2) = 2 . 1 . 4 – 1 . 2 + 2 . 2 – 1 + 2
P (1 , 2) = 8 – 2 + 4 + 1 = 11 bulunur.








Örnek
X3 + 2x2 + 3x + 5 = (x2 + x + 1)(x + a) + bx+c
Eşitliğini sağlayan c kaçtır ?
Çözüm
X3 + 2x2 + 3x + 5 = x3 + ax2 + x2 + ax + x + a +bx...
- Üye olup tamamını bilgisayarınıza kaydedebilir, üzerinde değişiklik yapabilir, yazıcı çıktısı alabilirsiniz.